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Puspose of the study

Use Weihrauch degrees to classify mathematical theorems
according to their computational content.

Idea
Regard a theorem as a map:

Example

◮ A Π2 theorem: “(∀x ∈ X )(∃y ∈ Y )(x , y) ∈ A” can be seen as
a multivalued map f : x 7→ {y : (x , y) ∈ A}.
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Represented Sets and Realizers

f
X ✲✲ Z

g
U ✲✲ V
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◮ (X , δX ) is a represented set if δX :⊆ NN → X is surjective

◮ F is a realizer of f if for all p ∈ dom(f δX ) we get
δY F (p) ∈ f δX (p) (noted by F ⊢ f )

If δ(p) = x then we say p is a name of the object x .
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Weihrauch Degree

f
X ✲✲ Z

g
U ✲✲ V

δX δY δU δV

❄ ❄ ❄ ❄

NN NN NN NN✲✲F G

◮ f is strongly Weihrauch reducible to g if there exist two
computable functions H and K such that H ◦G ◦K ⊢ f for all
G ⊢ g (noted be f ≤sW g)

◮ f is (weakly) Weihrauch reducible to g if there exist two
computable functions H and K such that H〈id,G ◦K 〉 ⊢ f for
all G ⊢ g (noted be f ≤W g)
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Invariance Under Representations

Definition
If we have two representations δ1 and δ2 of a set X then δ1 is said
reducible to δ2, noted by δ1 ≤ δ2, if there is a computable function
Φ :⊆ NN → NN such that δ1(p) = δ2Φ(p) for all p ∈ dom(δ1)

Lemma
Weihrauch degrees are invariant under equivalent representations.
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Tupling Functions and the Limit Map

Definition
Let (pi )i∈N be a sequence in Baire space. We define the following:

◮ 〈pi , pj〉(2n) = pi(n) and 〈pi , pj〉(2n + 1) = pj(n)

◮ 〈p0, p1, ..., pn〉 = 〈p0, 〈p1, ..., pn〉〉

◮ 〈p0, p1, ...〉〈n, k〉 = pn(k)

◮ lim :⊆ NN → NN; lim〈p0, p1, ...〉(n) = limi→∞ pi(n)
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Operators

Let f :⊆ (X , δX ) ⇒ (Y , δY ) be a multivalued function. Then we
define

◮ the parallelization f̂ :⊆ (XN, δNX ) ⇒ (Y N, δNY ) of f by

f̂ (xi )i∈N := ×∞
i=0f (xi )

for all (xi) ∈ XN, where δN :⊆ NN → XN is defined by
δN〈p0, p1, ...〉 := (δ(pi ))i∈N

◮ the jump f ′ :⊆ (X , δ′X ) ⇒ (Y , δY ) of f by f ′(x) = f (x) and
δ′ := δ ◦ lim

◮ for n ≥ 1; f n :⊆ (X n, δn) ⇒ (Y n, δn) where
δn〈p0, ..., pn〉 = (δ(p0), ..., δ(pn))
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Facts

Let f and g be multivalued functions on represented spaces. Then

◮ f ≤W f̂

◮ f ≤W g =⇒ f̂ ≤W ĝ

◮ f̂ ≡W
̂̂
f

◮ f ≤sW f ′

◮ f ≤sW g =⇒ f ′ ≤sW g ′

T. Rakotoniaina UniBw & UCT

Weihrauch Degrees & Ramsey’s Theorem



Introduction Variants Idempotency and Parallelization

Invariance Principles

Lemma
Let f and g be multivalued functions on represented spaces such

that f ≤W g. Let n ∈ N.
◮ (Computable Invariance Principle) If g has a realizer that

maps computable inputs to computable outputs, then f has a

realizer that maps computable inputs to computable outputs.
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Ramsey Theory

Definition
Given l ≥ 1 and k ≥ 2 we define

◮ [N]l := {size l subsets of N}
• [N]1 = {{0}, {1}, {2}, {3}, ...}
• [N]2 = {{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}, {0, 4}, ...}

◮ a coloring c : [N]l → {0, 1, 2, ..., k − 1}

Theorem (Ramsey’s Theorem)

Given l , k ≥ 1 and a coloring c, there is an infinite subset M of N
on which c is constant on [M]l

Such sets M will be called homogeneous and we write c(M) = x if
x is the constant value of c on M.
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Ramsey’s Theorem as a Map

Definition
We define the following:

◮ Cl ,k denotes the set of all c : [N]l → {0, 1, 2, ..., k − 1}

◮ RTl ,k : Cl ,k ⇒ 2N; c 7→ {M : M is homogeneous for c}

Sets are represented by their characteristic function and Cl ,k can be
represented in the following way: δCl,k (p) = c if for all

{i1, ..., il} ∈ [N]l we have c{i1, ..., il} = x iff p〈i1, ..., il 〉 = x
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Ramsey’s Theorem as a Map

Definition
We define the following:

◮ Cl ,k denotes the set of all c : [N]l → {0, 1, 2, ..., k − 1}

◮ RTl ,k : Cl ,k ⇒ 2N; c 7→ {M : M is homogeneous for c}

Sets are represented by their characteristic function and Cl ,k can be
represented in the following way: δCl,k (p) = c if for all

{i1, ..., il} ∈ [N]l we have c{i1, ..., il} = x iff p〈i1, ..., il 〉 = x

The following maps are also very interesting

◮ MRTl ,k : Cl ,k ⇒ 2N;
c 7→ {M : M is a maximal homogeneous set for c}

◮ CRTl ,k : Cl ,k ⇒ N× 2N;
c 7→ {(x ,M) : M is an homogeneous set with c(M) = x}
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Finite Intersection

Lemma
Given n ∈ N and c1, ..., cn in Cl ,k , we get ∩n

i=1RTl ,k(ci ) 6= ∅.

Proof idea.
We construct a map t : (Cl ,k)

n → Cl ,kn ; (c1, ..., cn) 7→ c such that
RTl ,kn(c) = ∩n

i=1RTl ,k(ci ). And we apply Ramsey’s Theorem
itself.

Definition
∩nRTl ,k : (Cl ,k)

n
⇒ 2N;

(c1, ..., cn) 7→ {M : M is homogeneous for each ci}
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Bolzano-Weierstrass and Ramsey Theorems

Definition
We define the Bolzano-Weierstrass map for {0, 1} as the following:
BWT2 : {0, 1}

N
⇒ {0, 1}; p 7→ {x : (∃∞n) p(n) = x}

Lemma

◮ BWT2 ≡W RT1,2 ≡W CRT1,2 ≡W MRT1,2

◮ BWT2|sWRT1,2

◮ BWT2 <sW CRT1,2 and RT1,2 <sW CRT1,2

◮ CRT1,2 <sW MRT1,2

◮ MRT1,2 ≡sW id×RT1,2
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Strong Reducibility

CRT1,2

✡
✡

✡✢

❏
❏
❏❫

BWT2 RT1,2

MRT1,2 ≡ id× RT1,2

❄
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Jumps and Strong Reducibility

Theorem
BWT

′
2|sWRT

′
1,2

Proof.
BWT

′
2 maps computable inputs to computable outputs. However

there is a ∆0
2 set which is bi-immune. Hence RT

′
1,2 maps some

computable inputs only to non-computable outputs. By the
Computable Invariance Principle RT

′
1,2 �sW BWT

′
2. We get a

strong result for the other direction.
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Omniscience Principle and Ramsey Theorems

LLPO :⊆ NN
⇒ NN;LLPO(p) ∋

{
0 if (∀n ∈ N)p(2n) = 0,
1 if (∀n ∈ N)p(2n + 1) = 0

where dom(LLPO) = {p ∈ NN : p(k) 6= 0 for at most one k}

Theorem
LLPO �sW RT

′
1,2

Proof idea.
Assuming the contrary will violate the Finite Intersection
Lemma.
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The Stable Ramsey Theorem

Definition
Let c be in C2,2, we say that c is stable is for all m ∈ N the limit
limn→∞(c{n,m}) exists. And we define

◮ SRT2,2 :⊆ C2,2 ⇒ 2N, where dom(SRT2,2) = {c : c is stable}
and SRT2,2(c) = RT2,2(c) for all c ∈ dom(SRT2,2)

Theorem
CRT

′
1,2 ≡W SRT2,2
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Coin Avoidance and The Limit Map

Theorem (Seetapun and Slaman 1995)

For any computable coloring c ∈ C2,2 and non-computable set A

there is an homogeneous set M ∈ RT2,2(c) such that A �T M.

Theorem

◮ lim �W RT2,2

◮ RT2,2 �W MRT
′
1,2

◮ lim <sW MRT
′
1,2

◮ lim|WCRT
′
1,2
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More Theorems

Definition
We define the two following maps which are the Finite
Boundedness Principle and the Choice on Natural Numbers.

◮ FBP :⊆ NN
⇒ N; p 7→ {b : (∀n ∈ N)p(n) ≤ b}

◮ CN :⊆ NN
⇒ N; p 7→ {b : (∀n ∈ N)p(n) 6= b)}

Lemma

◮ FBP ≡w CN

◮ CN ≤W RT
′
1,2
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Conclusion
MRT

′
1,2

✡
✡✡✢

❏
❏❏❫

RT2,2

✡
✡✡✢

CRT
′
1,2 SRT2,2

✲✛

✡
✡✡✢

❏
❏❏❫

lim

BWT
′
2 RT

′
1,2

❏
❏❏❫

✡
✡✡✢

FBP ≡w CN

❙
❙✇

LPO

��✠
BWT2 RT1,2

✲✛

LLP0

✟✟✙
❄
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Idempotency and Parallelization

Definition
Let f be a function on represented spaces. We say that f is:

◮ idempotent if f 2 ≡W f

◮ parallelizable if f̂ ≡W f
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Finite Tolerance (Dorais et. al. 2012)

Definition
Let f :⊆ (X , δX ) ⇒ (Y , δY ). We say that f is finitely tolerant if
there exists a computable function T :⊆ NN → NN such that for
any realizer F ⊢ f and any p and q in dom(f δX ), for all k ∈ N

(1) (∀n) p(n + k) = q(n) implies

(2) r = F (p) =⇒ δYT 〈r , k〉 ∈ f δX (q)

Definition
A function f :⊆ (X , δX ) ⇒ (Y , δY ) is totally represented if δX is
total.
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Squashing Theorem (Dorais et. al. 2012)

Example

RTl ,k and BWTn are finitely tolerant and totally represented.

Theorem
If f is finitely tolerant, totally represented and idempotent then f

is parallelizable.
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Parallelization (Dorais et. al. 2012)

Theorem
RTl ,k is not parallelizable.

◮ R̂Tl ,2 �W RTl ,k

Corollary

RTl ,k is not idempotent.
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Separation for Different Size

Theorem
(RTl ,k)

n <sW RTl+1,2 and (RTl ,k)
n <W RTl+1,2

◮ RTl ,k <W RTl+1,k

◮ RT3,2 <sW RT4,2 (Dorais et. al. 2012)

Question
R̂Tl ,k �W RTl+1,k?
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Separation for Different Color

Theorem (Dorais et. al. 2012)

RTl ,k <sW RTl ,k+1 and RTl ,k <W RTl ,k+1

Question
(RTl ,k)

n �W RTl ,k+1?

Theorem
(RTl ,k)

n ≤sW ∩nRTl ,k ≡ RTl ,kn
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