The Weihrauch degree of Ramsey's Theorem for two colors

Tahina Rakotoniaina

Department of Mathematics & Applied Mathematics University of Cape Town, South Africa

Faculty of Computer Science Universität der Bundeswehr München, Germany

CCA, Nancy 2013

Puspose of the study

Use Weihrauch degrees to classify mathematical theorems according to their computational content.

Idea

Regard a theorem as a map:

Example

▶ A Π_2 theorem: " $(\forall x \in X)(\exists y \in Y)(x,y) \in A$ " can be seen as a multivalued map $f: x \mapsto \{y: (x,y) \in A\}$.

Contents

- ▶ Introduction to Weihrauch Degrees
- Variants of Ramsey's Theorem
- Idempotency and Parallelization

Contents

- ▶ Introduction to Weihrauch Degrees
- ► Variants of Ramsey's Theorem
- Idempotency and Parallelization

$$X \xrightarrow{f} Z$$

$$U \xrightarrow{g} V$$

Represented Sets and Realizers

Represented Sets and Realizers

$$\begin{array}{c|c}
\mathbb{N}^{\mathbb{N}} & \xrightarrow{G} \mathbb{N}^{\mathbb{N}} \\
\delta_{U} & & & \downarrow \delta_{V} \\
U & \xrightarrow{g} V
\end{array}$$

Represented Sets and Realizers

- ▶ (X, δ_X) is a represented set if $\delta_X : \subseteq \mathbb{N}^{\mathbb{N}} \to X$ is surjective
- ▶ F is a realizer of f if for all $p \in \text{dom}(f\delta_X)$ we get $\delta_Y F(p) \in f\delta_X(p)$ (noted by $F \vdash f$)

If $\delta(p) = x$ then we say p is a name of the object x.

Weihrauch Degree

- ▶ f is strongly Weihrauch reducible to g if there exist two computable functions H and K such that $H \circ G \circ K \vdash f$ for all $G \vdash g$ (noted be $f \leq_{sW} g$)
- ▶ f is (weakly) Weihrauch reducible to g if there exist two computable functions H and K such that $H\langle \operatorname{id}, G \circ K \rangle \vdash f$ for all $G \vdash g$ (noted be $f \leq_W g$)

Invariance Under Representations

Definition

If we have two representations δ_1 and δ_2 of a set X then δ_1 is said reducible to δ_2 , noted by $\delta_1 \leq \delta_2$, if there is a computable function $\Phi:\subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ such that $\delta_1(p)=\delta_2\Phi(p)$ for all $p\in \mathsf{dom}(\delta_1)$

Lemma

Weihrauch degrees are invariant under equivalent representations.

Tupling Functions and the Limit Map

Definition

Let $(p_i)_{i\in\mathbb{N}}$ be a sequence in Baire space. We define the following:

$$ightharpoonup \langle p_i, p_j \rangle(2n) = p_i(n) \text{ and } \langle p_i, p_j \rangle(2n+1) = p_j(n)$$

$$\langle p_0, p_1, ... \rangle \langle n, k \rangle = p_n(k)$$

$$\blacktriangleright \ \lim : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}; \ \lim \langle \rho_0, \rho_1, ... \rangle (n) = \lim_{i \to \infty} \rho_i(n)$$

Operators

Let $f :\subseteq (X, \delta_X) \rightrightarrows (Y, \delta_Y)$ be a multivalued function. Then we define

▶ the parallelization $\widehat{f}:\subseteq (X^{\mathbb{N}}, \delta_X^{\mathbb{N}}) \rightrightarrows (Y^{\mathbb{N}}, \delta_Y^{\mathbb{N}})$ of f by

$$\widehat{f}(x_i)_{i\in\mathbb{N}}:=\times_{i=0}^{\infty}f(x_i)$$

for all $(x_i) \in X^{\mathbb{N}}$, where $\delta^{\mathbb{N}} :\subseteq \mathbb{N}^{\mathbb{N}} \to X^{\mathbb{N}}$ is defined by $\delta^{\mathbb{N}} \langle p_0, p_1, ... \rangle := (\delta(p_i))_{i \in \mathbb{N}}$

- ▶ the jump $f' :\subseteq (X, \delta'_X) \rightrightarrows (Y, \delta_Y)$ of f by f'(x) = f(x) and $\delta' := \delta \circ \lim$
- for $n \ge 1$; $f^n :\subseteq (X^n, \delta^n) \Longrightarrow (Y^n, \delta^n)$ where $\delta^n \langle p_0, ..., p_n \rangle = (\delta(p_0), ..., \delta(p_n))$

Facts

Let f and g be multivalued functions on represented spaces. Then

- ► $f \leq_W \hat{f}$
- $f \leq_W g \Longrightarrow \widehat{f} \leq_W \widehat{g}$
- $\blacktriangleright \ \widehat{f} \equiv_W \widehat{\widehat{f}}$
- f ≤_{sW} f'
- $f \leq_{sW} g \Longrightarrow f' \leq_{sW} g'$

Invariance Principles

Lemma

Let f and g be multivalued functions on represented spaces such that $f \leq_W g$. Let $n \in \mathbb{N}$.

(Computable Invariance Principle) If g has a realizer that maps computable inputs to computable outputs, then f has a realizer that maps computable inputs to computable outputs.

Contents

- ► Introduction to Weihrauch Degrees
- Variants of Ramsey's Theorem
- Idempotency and Parallelization

Ramsey Theory

Definition

Given $l \ge 1$ and $k \ge 2$ we define

- $[\mathbb{N}]^I := \{ \text{size } I \text{ subsets } of \ \mathbb{N} \}$
 - $[\mathbb{N}]^1 = \{\{0\}, \{1\}, \{2\}, \{3\}, ...\}$
 - $[\mathbb{N}]^2 = \{\{0,1\},\{0,2\},\{1,2\},\{0,3\},\{1,3\},\{2,3\},\{0,4\},...\}$
- ▶ a coloring $c : [\mathbb{N}]^I \to \{0, 1, 2, ..., k-1\}$

Theorem (Ramsey's Theorem)

Given $l, k \ge 1$ and a coloring c, there is an infinite subset M of \mathbb{N} on which c is constant on $[M]^l$

Such sets M will be called homogeneous and we write c(M) = x if x is the constant value of c on M.

Ramsey's Theorem as a Map

Definition

We define the following:

- ▶ $C_{l,k}$ denotes the set of all $c : [\mathbb{N}]^l \to \{0,1,2,...,k-1\}$
- ▶ $RT_{I,k} : C_{I,k} \rightrightarrows 2^{\mathbb{N}}; c \mapsto \{M : M \text{ is homogeneous for } c\}$

Sets are represented by their characteristic function and $\mathcal{C}_{l,k}$ can be represented in the following way: $\delta_{\mathcal{C}_{l,k}}(p)=c$ if for all

$$\{i_1,...,i_l\} \in [\mathbb{N}]^l$$
 we have $c\{i_1,...,i_l\} = x$ iff $p\langle i_1,...,i_l\rangle = x$

Ramsey's Theorem as a Map

Definition

We define the following:

- ▶ $C_{l,k}$ denotes the set of all $c : [\mathbb{N}]^l \to \{0,1,2,...,k-1\}$
- ▶ $RT_{I,k} : C_{I,k} \rightrightarrows 2^{\mathbb{N}}$; $c \mapsto \{M : M \text{ is homogeneous for } c\}$

Sets are represented by their characteristic function and $C_{l,k}$ can be represented in the following way: $\delta_{C_{l,k}}(p) = c$ if for all

$$\{i_1,...,i_l\} \in [\mathbb{N}]^l$$
 we have $c\{i_1,...,i_l\} = x$ iff $p(i_1,...,i_l) = x$

The following maps are also very interesting

- ▶ $MRT_{I,k} : \mathcal{C}_{I,k} \rightrightarrows 2^{\mathbb{N}};$ $c \mapsto \{M : M \text{ is a maximal homogeneous set for } c\}$
- ► $CRT_{I,k} : \mathcal{C}_{I,k} \rightrightarrows \mathbb{N} \times 2^{\mathbb{N}};$ $c \mapsto \{(x, M) : M \text{ is an homogeneous set with } c(M) = x\}$

Finite Intersection

Lemma

Given $n \in \mathbb{N}$ and $c_1, ..., c_n$ in $\mathcal{C}_{l,k}$, we get $\bigcap_{i=1}^n \mathrm{RT}_{l,k}(c_i) \neq \emptyset$.

Proof idea.

We construct a map $t: (\mathcal{C}_{l,k})^n \to \mathcal{C}_{l,k^n}; (c_1,...,c_n) \mapsto c$ such that $\mathrm{RT}_{l,k^n}(c) = \cap_{i=1}^n \mathrm{RT}_{l,k}(c_i)$. And we apply Ramsey's Theorem itself.

Definition

Bolzano-Weierstrass and Ramsey Theorems

Definition

We define the Bolzano-Weierstrass map for $\{0,1\}$ as the following:

$$BWT_2: \{0,1\}^{\mathbb{N}} \rightrightarrows \{0,1\}; \ p \mapsto \{x: (\exists^{\infty} n) \ p(n) = x\}$$

Lemma

- ▶ BWT₂ \equiv_W RT_{1,2} \equiv_W CRT_{1,2} \equiv_W MRT_{1,2}
- $ightharpoonup \mathrm{BWT}_2|_{sW}\mathrm{RT}_{1,2}$
- $ightharpoonup \mathrm{BWT}_2 <_{sW} \mathrm{CRT}_{1,2}$ and $\mathrm{RT}_{1,2} <_{sW} \mathrm{CRT}_{1,2}$
- $ightharpoonup \operatorname{CRT}_{1,2} <_{sW} \operatorname{MRT}_{1,2}$
- $MRT_{1,2} \equiv_{sW} id \times RT_{1,2}$

Strong Reducibility

$$MRT_{1,2} \equiv id \times RT_{1,2}$$

$$CRT_{1,2}$$

$$BWT_{2}$$

$$RT_{1,2}$$

Jumps and Strong Reducibility

Theorem

 $\mathrm{BWT}_2'|_{sW}\mathrm{RT}_{1,2}'$

Proof.

 BWT_2' maps computable inputs to computable outputs. However there is a Δ_2^0 set which is bi-immune. Hence $\mathrm{RT}_{1,2}'$ maps some computable inputs only to non-computable outputs. By the Computable Invariance Principle $\mathrm{RT}_{1,2}' \nleq_{sW} \mathrm{BWT}_2'$. We get a strong result for the other direction.

Omniscience Principle and Ramsey Theorems

$$\text{LLPO}:\subseteq\mathbb{N}^{\mathbb{N}}\rightrightarrows\mathbb{N}^{\mathbb{N}}; \text{LLPO}(p)\ni\left\{\begin{array}{ll}0&\text{if }(\forall n\in\mathbb{N})p(2n)=0,\\1&\text{if }(\forall n\in\mathbb{N})p(2n+1)=0\end{array}\right.$$

where $\mathsf{dom}(\mathsf{LLPO}) = \{ p \in \mathbb{N}^\mathbb{N} : p(k) \neq 0 \text{ for at most one } k \}$

Theorem

LLPO $\nleq_{sW} RT'_{1,2}$

Proof idea.

Assuming the contrary will violate the Finite Intersection Lemma.

The Stable Ramsey Theorem

Definition

Let c be in $\mathcal{C}_{2,2}$, we say that c is stable is for all $m \in \mathbb{N}$ the limit $\lim_{n \to \infty} (c\{n, m\})$ exists. And we define

▶ $SRT_{2,2} :\subseteq \mathcal{C}_{2,2} \rightrightarrows 2^{\mathbb{N}}$, where $dom(SRT_{2,2}) = \{c : c \text{ is stable}\}$ and $SRT_{2,2}(c) = RT_{2,2}(c)$ for all $c \in dom(SRT_{2,2})$

Theorem

$$CRT'_{1,2} \equiv_W SRT_{2,2}$$

Coin Avoidance and The Limit Map

Theorem (Seetapun and Slaman 1995)

For any computable coloring $c \in C_{2,2}$ and non-computable set A there is an homogeneous set $M \in \mathrm{RT}_{2,2}(c)$ such that $A \nleq_{\mathcal{T}} M$.

Theorem

- ▶ $\lim \not\leq_W RT_{2,2}$
- $ightharpoonup \operatorname{RT}_{2,2} \nleq_W \operatorname{MRT}_{1,2}'$
- $\blacktriangleright \lim <_{sW} \mathrm{MRT}'_{1,2}$
- $ightharpoonup \lim_{W} \operatorname{CRT}_{1,2}'$

More Theorems

Definition

We define the two following maps which are the Finite Boundedness Principle and the Choice on Natural Numbers.

- ► FBP : $\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$; $p \mapsto \{b : (\forall n \in \mathbb{N})p(n) \leq b\}$
- $\blacktriangleright \ \mathrm{C}_{\mathbb{N}} : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}; p \mapsto \{b : (\forall n \in \mathbb{N}) p(n) \neq b)\}$

Lemma

- ▶ FBP $\equiv_{w} C_{\mathbb{N}}$
- $C_{\mathbb{N}} \leq_W \mathrm{RT}'_{1,2}$

Conclusion

Contents

- ► Introduction to Weihrauch Degrees
- Variants of Ramsey's Theorem
- Idempotency and Parallelization

Idempotency and Parallelization

Definition

Let f be a function on represented spaces. We say that f is:

- ▶ idempotent if $f^2 \equiv_W f$
- ▶ parallelizable if $\widehat{f} \equiv_W f$

Finite Tolerance (Dorais et. al. 2012)

Definition

Let $f:\subseteq (X,\delta_X) \rightrightarrows (Y,\delta_Y)$. We say that f is finitely tolerant if there exists a computable function $T:\subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ such that for any realizer $F \vdash f$ and any p and q in $dom(f\delta_X)$, for all $k \in \mathbb{N}$

- (1) $(\forall n) p(n+k) = q(n)$ implies
- (2) $r = F(p) \Longrightarrow \delta_Y T(r, k) \in f\delta_X(q)$

Definition

A function $f :\subseteq (X, \delta_X) \rightrightarrows (Y, \delta_Y)$ is totally represented if δ_X is total.

Squashing Theorem (Dorais et. al. 2012)

Example

 $RT_{l,k}$ and BWT_n are finitely tolerant and totally represented.

Theorem

If f is finitely tolerant, totally represented and idempotent then f is parallelizable.

Idempotency and Parallelization

Parallelization (Dorais et. al. 2012)

Theorem

 $RT_{I,k}$ is not parallelizable.

$$\blacktriangleright \ \widehat{\mathrm{RT}_{I,2}} \nleq_W \mathrm{RT}_{I,k}$$

Corollary

 $RT_{I,k}$ is not idempotent.

Separation for Different Size

Theorem

 $(RT_{I,k})^n <_{sW} RT_{I+1,2}$ and $(RT_{I,k})^n <_W RT_{I+1,2}$

- $ightharpoonup \operatorname{RT}_{I,k} <_W \operatorname{RT}_{I+1,k}$
- $ightharpoonup \operatorname{RT}_{3,2} <_{sW} \operatorname{RT}_{4,2}$ (Dorais et. al. 2012)

Question

$$\widehat{\mathrm{RT}}_{I,k} \nleq_W \mathrm{RT}_{I+1,k}$$
?

Separation for Different Color

Theorem (Dorais et. al. 2012)

$$\mathrm{RT}_{I,k} <_{\mathsf{s}W} \mathrm{RT}_{I,k+1}$$
 and $\mathrm{RT}_{I,k} <_W \mathrm{RT}_{I,k+1}$

Question

$$(\mathrm{RT}_{I,k})^n \nleq_W \mathrm{RT}_{I,k+1}$$
?

Theorem

$$(\mathrm{RT}_{I,k})^n \leq_{sW} \cap^n \mathrm{RT}_{I,k} \equiv \mathrm{RT}_{I,k^n}$$

Vasco Brattka, Matthew de Brecht, and Arno Pauly.

Closed choice and a uniform low basis theorem.

Annals of Pure and Applied Logic, 163:986-1008, 2012.

Vasco Brattka and Guido Gherardi.

Weihrauch degrees, omniscience principles and weak computability.

The Journal of Symbolic Logic, 76(1):143–176, 2011.

Vasco Brattka, Guido Gherardi, and Alberto Marcone.

The Bolzano-Weierstrass theorem is the jump of weak Kőnig's lemma.

Annals of Pure and Applied Logic, 163:623-655, 2012.

François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer

On the uniform relationships between combinatorial problems. 2012

THANK YOU

